

Water Loss Performance Indicators

Water Balance and Performance Indicator Training Bangkal, 11/18/10

miya Arison Group

System Input Volume		Billed	Billed Metered Consumption	Revenue Water
	Authorized Consumption	Consumption	Billed Unmetered Consumption	
		Unbilled Authorized Consumption	Unbilled Metered Consumption	
			Unbilled Unmetered Consumption	
	Water Losses	Commercial		
		Losses	Three different	Non Revenue Water
		Physical Losses	Indicators are needed!	Water

NRW as % of System Input is a very misleading Indicator

- NRW is a poor technical indicator: why?
 - misleading: "favours" utilities with high consumption, intermittent supply, low pressure
 - Iumps together two independent loss components: physical and commercial losses
- Many international and national associations advise against using percentages
- But: unfortunately still the most common indicator!

Six Systems Ranked According to Physical Losses as % of System Input

Ranked According to: Liters/Connection/Day

Ranked According to: Liters/Connection/Day/m Pressure

First Conclusions

- Input Volume gives a false indication
- The picture becomes clearer using liters per connection per day
- But only when taking average pressure into account the true leakage situation is revealed
- Therefore: quote average pressure when talking about leakage

How to Account for Intermittent Supply?

- Always calculate Liters per Connection for a full 24 hour period for valid comparison
- For example: If leakage is 200 liters per connection per day at 12 hour supply time, the performance indicator would be:
- 400 liters/connection/day (w.s.p. = WHEN the system is pressurized)

Adjusting Performance Indicators for Intermittent Supply Situations

Average Supply Time	Representative for an area of about service connections	multiply
24 h/d	10,000	240,000
12 h/d	20,000	240,000
6 h/d	5,000	30,000
~ 14.6 h/d	35,000	510,000

Correct Indicator for measured 200 liters per day:

200 /14.6 x 24 = 329 l/conn./d (w.s.p.)

Infrastructure Leakage Index (ILI)

one number capturing leakage management efficiency

Infrastructure Leakage Index (ILI)

The ILI is a simple ratio:

ILI = CAPL / MAAPL

- **CAPL** = Current Annual Physical Losses
- MAAPL = Minimum Achievable Annual Physical Losses, level of losses that one would expected from an utility with a network that is in good condition AND which practices intensive active leakage control

Illustrating the ILI Concept

Calculating the ILI

Step 1: Calculate MAAPL (reference value): MAAPL (I/day) = (18 x LM + 0.8 x NC + 25 x LP) x P

- LM = Length of Mains (km)
- **NC** = **Number of service Connections**
- LP = Length of Service Connections from property boundary to customer meter (Length of pipe on Private land) (km) *not to be confused with total length of Connections*
- P = average Pressure (meters)

Calculating ILI (continued)

- Step 2: Calculate current physical losses per day (e.g. from Water Balance)
- Step 3: Calculate ILI = CAPL / MAAPL
- Step 4: adjust for intermittent supply by dividing MAAPL by the number of average number of supply hours per day
- Step 4: Compare ILI with Physical Loss Target Matrix

ILI from 1 to ?

ILI:	1	2	3	5	10	
Legend: Unavoidable Annual Real Losses						

Physical Loss Target Matrix

(use with either ILI or I/conn./day & average pressure)

Technical Performance Category			Physical Losses [Litres/connection/day] (when the system is pressurised) at an average pressure of:					
			10 m	20 m	30 m	40 m	50 m	
be SS	Α	1 - 2		< 50	< 75	< 100	< 125	
Develope Countrie	В	2 - 4		50-100	75-150	100-200	125-250	
	С	4 - 8		100-200	00-200 150-300		250-500	
	D	> 8		> 200	> 300	> 400	> 500	
ng Ss	Α	1 - 4	< 50	< 100	< 150	< 200	< 250	
Developi Countrie	В	4 - 8	50-100	100-200	150-300	200-400	250-500	
	С	8 - 16	100-200	200-400	300-600	400-800	500-1000	
	D	> 16	> 200	> 400	> 600	> 800	> 1000	

Physical Loss Performance Categories; Guide to Further Action

Category A:

 Good; further loss reduction may be uneconomic; careful analysis needed to identify cost effective improvements

Category C:

 Poor: tolerable only if water is plentiful and cheap; even then intensify NRW reduction efforts

Category B:

 Potential for marked improvements: consider pressure management, better active leakage control practices, and better maintenance

Category D:

 Terrible: inefficient use of resources; NRW reduction programs imperative and priority

Water Loss Performance Indicators

A Physical Losses

- Liters/connection/day
- Infrastructure Leakage Index (ILI)
- Commercial Losses
 - % of Authorized Consumption
 - Liters/connection/day
- NRW
 - NOT % of system input volume;
 - Liters/connection/day

Work in progress: NRW Target Matrix

NRW Management Performance category		Non-Revenue Water in Liters/connection/day when the system is pressurized at an average pressure of:					
		10 m (15 psi)	20 m (30 psi)	30 m (45 psi)	40 m (60psi)	50 m (75 psi)	
	A1		< 50	< 65	< 75	< 85	
ome ies	A2		50-100	65-125	75-150	85-175	
Inc untr	В		100-200	125-250	150-300	175-350	
Ligh Cou	С		200-350	250-450	300-550	350-650	
-	D		> 350	> 450	> 550	> 650	
e	A1	<55	<80	<105 <130		< 155	
Midc Je ies	A2	55-110	80-160	105-210	130-260	155-310	
nd N com untr	В	110-220	160-320	210-420	260-520	310-620	
Ln Col	С	220-400	320-600	420-800	520-1000	620-1200	
Γο	D	> 400	> 600	> 800	> 1000	> 1200	

R Liemberger, from a paper to be given at Water Loss 2010, June 2010 19

				計算開始
WB-EasyCal	C♥		1.)	系統載入量
The Free Weter Pelence	Softwara		2.)	收費取水量
Version 3 01 (26 February 2010)	Sonware		3.)	不收費取水量
			4.)	非法取水量
		☆輪	5.)	用戶水鑢不準度及資料處理誤差
		資	6.)	管網資料
自來水單位名稱:	年:		7.)	水壓
			8.)	間歇供水
士 业亚衡計算业是立田业期間,	205 1		9.)	財務資訊
本小千倒 司 昇小里之用小别间:	303 8		Α	以 m3/year 計之水平衡
			в	以 m3/day 計之水平衡
		結 <mark>報</mark>	с	水平衡期間
			D	績效指標
			Е	圖表
by courtesy of Liemberger & P	artners			切換語言
by countery of Elonisorger an	t things in life are free!			Change Language
				www.liemberger.cc

download from www.liemberger.cc

Key Messages

- NRW as % of system input is very misleading and it COMPLETELY unsuitable for benchmarking and international comparisons
- Always use liters/connection/day (w.s.p.)
- Separate indicators needed for physical and commercial losses
- ILI, the best indicator for leakage benchmarking